A Level 1 Maass Spezialschar for Modular Forms on $\mathrm{SO}_8$

Finley McGlade (UC San Diego)

30-Nov-2023, 22:00-23:00 (2 years ago)

Abstract: The classical Spezialschar is the subspace of the space of holomorphic modular forms on $\mathrm{Sp}_4(\mathbb{Z})$ whose Fourier coefficients satisfy a particular system of linear equations. An equivalent characterization of the Spezialschar can be obtained by combining work of Maass, Andrianov, and Zagier, whose work identifies the Spezialschar in terms of a theta-lift from $\widetilde{\mathrm{SL}_2}$. Inspired by work of Gan-Gross-Savin, Weissman and Pollack have developed a theory of modular forms on the split adjoint group of type D_4. In this setting we describe an analogue of the classical Spezialschar, in which Fourier coefficients are used to characterize those modular forms which arise as theta lifts from holomorphic forms on $\mathrm{Sp}_4(\mathbb{Z})$.

number theory

Audience: researchers in the topic


UCSD number theory seminar

Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.

Organizers: Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen
*contact for this listing

Export talk to